By flow cytometry (Fig. 2E, F respectively). There were higher percentages of T cell/HBEC conjugates seen when the HBEC were cytokine activated (3.6 vs 1.4 for CD4+ and 6.3 vs 2.1 for CD8+). After determining that HBEC were capable of binding to both CD4+ and CD8+ T cells, the ability of HBEC to support T cell proliferation and present alloantigens was assessed by co-culturing CFSE-labelled donor PBMCs with a confluent monolayer of either resting or cytokine stimulated HBECs. In addition, the agonistic antibodies aCD3/aCD28 were also added to the assay to mimic T cell receptor (TCR) stimulation and co-stimulation respectively [29]. Six days following co-culture the percentage of CD4+ and CD8+ T cells proliferating was determined by measuring the reduction in CFSE MFI (Fig. 3A). While the presence of soluble aCD3 and aCD28 resulted in a modest Licochalcone A increase in proliferatingCD8+ cells, the only significant increase in proliferation was observed when the PBMC were co-cultured with TNF+IFNcactivated HBEC and aCD3/aCD28 (Fig. 3B), indicating that HBEC support the proliferation of CD8+ T cells, however, the CD8+ cells must also be activated via their TCR. Interestingly, CD4+ T cell proliferation was significantly increased in the presence of both resting and cytokine-stimulated HBEC (Fig. 3C), however, the CD4+ cells also must be stimulated via their TCR with aCD3 or aCD3/aCD28 to observe the HBEC-mediated support of proliferation. It is most likely that the modest increase in proliferation for both CD4+ and CD8+ T cells following aCD3 stimulation is indicating that the cells were not stimulated using a solid phase activation, i.e. plate bound aCD3. Experiments using transwells have indicated that when the PBMC were physically separated from the HBEC monolayer during co-culture, the increase in proliferation 23977191 over control samples were greatly reduced (Fig. S1). This was observed for both CD4+ and CD8+ T cells suggesting that direct interactionBrain Endothelium and T Cell ProliferationFigure 3. HBEC support the proliferation of CD4+ and CD8+ T cells. A, CFSE histogram plots of gated CD4+ (left panel) and CD8+ (right panel) 6 days following the start of the co-culture of HBEC and donor PBMC. For co-culture 16105 CFSE-labelled donor PBMC were co-cultured or not with a confluent monolayer of either resting or 10 ng/ml TNF+50 ng/ml IFNc pre-stimulated HBEC cells. PBMC were either subjected to resting conditions or stimulation with aCD3 or aCD3/CD28 mAbs. Following 6 days of culture, cells were harvested and stained with 24786787 CD4 and CD8 mAbs to identify proliferating cell populations. CFSE histograms depict the number of events (y-axis) and the fluorescence intensity (x-axis) with proliferating cells displaying a progressive 2-fold loss in fluorescence intensity following cell division, indicative of proliferating cells. Histograms are representative of four independent experiments with the same donor. Graphical get KS-176 representation of the percentage of CD4+ (B) and CD8+ (C) PBMC proliferating following 6 days of culture either alone (white bars) or in the presence of resting (grey bars) or cytokine stimulated (black bars) HBEC as outlined above. Data is pooled from four independent experiments with the same donor. * indicates statistically significant differences between control PBMC and respective co-culture conditions using a non-parametric Mann-Whitney test (p,0.05). doi:10.1371/journal.pone.0052586.gbetween HBEC and T cells is required for HBEC-mediated su.By flow cytometry (Fig. 2E, F respectively). There were higher percentages of T cell/HBEC conjugates seen when the HBEC were cytokine activated (3.6 vs 1.4 for CD4+ and 6.3 vs 2.1 for CD8+). After determining that HBEC were capable of binding to both CD4+ and CD8+ T cells, the ability of HBEC to support T cell proliferation and present alloantigens was assessed by co-culturing CFSE-labelled donor PBMCs with a confluent monolayer of either resting or cytokine stimulated HBECs. In addition, the agonistic antibodies aCD3/aCD28 were also added to the assay to mimic T cell receptor (TCR) stimulation and co-stimulation respectively [29]. Six days following co-culture the percentage of CD4+ and CD8+ T cells proliferating was determined by measuring the reduction in CFSE MFI (Fig. 3A). While the presence of soluble aCD3 and aCD28 resulted in a modest increase in proliferatingCD8+ cells, the only significant increase in proliferation was observed when the PBMC were co-cultured with TNF+IFNcactivated HBEC and aCD3/aCD28 (Fig. 3B), indicating that HBEC support the proliferation of CD8+ T cells, however, the CD8+ cells must also be activated via their TCR. Interestingly, CD4+ T cell proliferation was significantly increased in the presence of both resting and cytokine-stimulated HBEC (Fig. 3C), however, the CD4+ cells also must be stimulated via their TCR with aCD3 or aCD3/aCD28 to observe the HBEC-mediated support of proliferation. It is most likely that the modest increase in proliferation for both CD4+ and CD8+ T cells following aCD3 stimulation is indicating that the cells were not stimulated using a solid phase activation, i.e. plate bound aCD3. Experiments using transwells have indicated that when the PBMC were physically separated from the HBEC monolayer during co-culture, the increase in proliferation 23977191 over control samples were greatly reduced (Fig. S1). This was observed for both CD4+ and CD8+ T cells suggesting that direct interactionBrain Endothelium and T Cell ProliferationFigure 3. HBEC support the proliferation of CD4+ and CD8+ T cells. A, CFSE histogram plots of gated CD4+ (left panel) and CD8+ (right panel) 6 days following the start of the co-culture of HBEC and donor PBMC. For co-culture 16105 CFSE-labelled donor PBMC were co-cultured or not with a confluent monolayer of either resting or 10 ng/ml TNF+50 ng/ml IFNc pre-stimulated HBEC cells. PBMC were either subjected to resting conditions or stimulation with aCD3 or aCD3/CD28 mAbs. Following 6 days of culture, cells were harvested and stained with 24786787 CD4 and CD8 mAbs to identify proliferating cell populations. CFSE histograms depict the number of events (y-axis) and the fluorescence intensity (x-axis) with proliferating cells displaying a progressive 2-fold loss in fluorescence intensity following cell division, indicative of proliferating cells. Histograms are representative of four independent experiments with the same donor. Graphical representation of the percentage of CD4+ (B) and CD8+ (C) PBMC proliferating following 6 days of culture either alone (white bars) or in the presence of resting (grey bars) or cytokine stimulated (black bars) HBEC as outlined above. Data is pooled from four independent experiments with the same donor. * indicates statistically significant differences between control PBMC and respective co-culture conditions using a non-parametric Mann-Whitney test (p,0.05). doi:10.1371/journal.pone.0052586.gbetween HBEC and T cells is required for HBEC-mediated su.
Interleukin Related interleukin-related.com
Just another WordPress site